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Abstract 

This thesis investigates the functional roles of single neurons through an information 

theoretical approach, primarily focusing on the input-output (I/O) functional relations in various 

neuronal models. Emphasizing the concept of mutual information, the study explores how 

neuronal heterogeneity and complexity contribute to information processing capabilities at the 

single neuron level. By comparing detailed and reduced models of Rat Layer 5b pyramidal cells 

and Human Layer 2/3 pyramidal cells, this research provides insights into the computational 

power of individual neurons. 

The analysis employs mutual information and entropy measures to quantify the amount 

of information transferred from presynaptic to postsynaptic neurons. It investigates how 

structural and biophysical properties, including dendritic morphology, synaptic input distribution, 

and ionic conductance variability, influence these measures. 

Key findings include the observation that NMDA-based synapses enhance neuronal 

complexity, and that the increase in synaptic conductance can alter a neuron’s computational 

properties. We hypothesis that neurons exhibit a spectrum of computational capabilities, with 

some neurons processing more information (high mutual information) and others maintaining 

stability in representations (low mutual information). These findings have implications for 

understanding the diversity of neuronal computation in health and disease and provide a 

foundation for future research in brain sciences and computational neuroscience. 

 

Keywords:  Single Neuron Computation, Entropy, Mutual Information ,Complexity. 
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Introduction 

The brain's remarkable ability to process information relies heavily on the heterogeneity 

of its constituent neurons, previous studies, such as in Perez-Nieves et al. [1], who have 

demonstrated that heterogeneity in spiking neural networks enhances performance on various 

tasks, particularly those with rich intrinsic temporal structures. Given the importance of 

heterogeneity in both theory and biology, a deeper understanding of its functional role at the 

single neuron level is essential. 

Studying the input-output functional relations of a variety of single neurons is crucial for 

several reasons. First, it provides insights into the basic building blocks of neural computation, 

allowing us to better understand how individual neurons process and transmit information [2]. 

This knowledge is fundamental for understanding neural computation in more complex neural 

circuits and systems, leading to better comprehension of higher brain functions. 

Second, by associating physiological markers and characteristics with functional traits, 

we can define biophysical mechanisms that contribute to irregular neural computation. This 

understanding can aid researchers in pinpointing specific cellular targets for therapeutic 

interventions, thereby promoting the creation of targeted therapies to reinstate normal neuronal 

function in neurological disorders. 

In this thesis, we aim to explore the input-output functional relations of multiple 

compartmental models of single neurons, focusing on how heterogeneity, in structure and in 

biophysical properties, contributes to neuronal dynamics and computations. Multiple 

compartmental models offer a biologically motivated approach with close correspondence to the 

underlying biophysical properties of neurons and their membrane ion channels [3]. By using 

these models, we can investigate the functional impact of diverse types of heterogeneity, such as 

morphological complexity, spatial distribution of synaptic inputs, and variability of ionic 

conductance, on the input-output relationship of single neurons. 

Through this investigation, we hope to shed light on the complex interplay between 

various forms of neuronal heterogeneity and the input-output (I/O) functional relations of single 

neurons. Ultimately, this deeper understanding of neuronal heterogeneity and the I/O relations of 

single neurons may provide new insights into the brain's efficient and robust information 

processing capabilities, provide a foundation for future research on neural computation and 

function, and aid in the development of targeted interventions for neurological disorders. 
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Neuronal Variability and its Different Measures  

The astounding variability observed in nature is a testament to the complexity of 

biological systems. This diversity is mirrored in the nervous system, where neurons exhibit a 

wide range of variability in aspects such as ion channel types, morphology, and other intrinsic 

properties. A key question in neuroscience is whether brain function stems solely from the 

connectivity between neurons or if it is also due to the inherent computational capabilities of 

individual neurons. In other words, are all neurons born equal, or do they possess distinct 

computational properties that contribute to the diversity of behaviors observed in nature? 

Traditionally, the firing rate of neurons has been utilized as a metric to characterize the 

computational capabilities of various brain modules. This approach reflects the long-standing 

focus in neuroscience on how the frequency of neuronal firing correlates with different cognitive 

and functional processes within the brain. For instance, in the motor cortex, studies have shown 

that the firing rate is closely linked to limb movement, with neurons firing at different rates 

depending on the direction of an arm movement [4]. In the visual cortex, particularly in areas 

like V1, the firing rate of neurons is correlated with visual stimuli, such as orientations of lines or 

edges in the visual field [5]. In the hippocampus, which is crucial for memory formation and 

spatial navigation, 'place cells' have been shown to fire at higher rates when an animal is in or 

moving towards a specific location [6]. Similarly, in the auditory cortex, the firing rate of 

neurons can be linked to the processing of sound frequencies, with certain neurons firing at 

higher rates in response to specific frequencies [7]. 

  However, relying on rate coding may not fully encapsulate the wide variability among 

neurons, as it falls short in explaining phenomena like sparse coding, millisecond-scale 

computation, and adaptation. Alternative measures, such as the Fano factor and coefficient of 

variance, offer more nuanced ways to quantify and understand neuronal diversity. [8] [9] 

The Fano factor is a measure of the dispersion of probability distribution, specifically 

defined as the ratio of the variance to the mean of a neuron's spike count. A Fano factor greater 

than one indicates greater variability than expected for a Poisson process, while a value less than 

one suggests a more regular firing pattern.  

The coefficient of variance, on the other hand, is the ratio of the standard deviation to the 

mean of the inter-spike interval (ISI) distribution. This measure can provide insights into the 

temporal structure of a neuron's firing pattern and its underlying computational properties. 
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By examining the Fano factor and coefficient of variance, we can delve deeper into the 

computational capabilities of individual neurons and determine whether these properties 

contribute to the observed variability in behaviors and coping mechanisms among species. 

However, these measures alone may not be sufficient to fully capture the intricacies of neuronal 

computation. 

This is where mutual information comes into play. As a concept first introduced by 

Claude Shannon in his ground-breaking work on information theory [10], mutual information 

provides a quantitative framework for analyzing the relationship between input and output 

signals in complex systems, including the intricate computations performed by single neurons in 

the brain. We will show that by utilizing mutual information, we might gain a more 

comprehensive understanding of the input-output relationships and computational capabilities of 

individual neurons [3], thereby shedding light on the power of variability in nature.  

The study of mutual information offers a promising avenue for investigating the 

computational properties of single neurons and their potential role in shaping the diverse 

behaviors observed in nature. By complementing traditional measures like firing rate, Fano 

factor, and coefficient of variance with mutual information analysis, we can deepen our 

understanding of the factors that contribute to the astonishing variability in biological systems. 

 

Neurons as Complex Computational Devices  

When the term "neuron" is used in machine learning research, it implies a perceptron as 

introduced by Rosenblatt [11]. However, biological neurons are quite distinct from their artificial 

counterparts. Indeed, Poirazi et al. demonstrated that a more accurate description of a single CA1 

pyramidal neuron can be achieved using a 2-layer neural network [12]. Furthermore, Moldwin et 

al. showed that a biological neuron can emulate the perceptron, concluding that the 

computational power of a single perceptron is just a subset of the computational capabilities of a 

single biological neuron [13], e.g. neuron can solve the XOR problem which infeasible in single 

perceptron as presented by as shown by [14] .  

Recently, Beniaguev et al. [15] have demonstrated that the presence or absence of NMDA 

receptors in the dendrites of cortical pyramidal neurons affects the “depth” of the analogous deep 

neural network (DNN) for this neuron. This implies that the presence of NMDA receptor 
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activation in dendrites might result in a more complex, layer-wise computation compared to 

AMPA receptor-based computation [15]. While various models exist that describe different 

morphologies, cable properties, and ion channels, our understanding of the computational power 

of individual neurons and the extent of variability in computational capabilities among different 

neurons remains limited.  

 

Artificial Neural Network Complexity Comparison 

Artificial Neural Networks (ANNs) have revolutionized computational neuroscience by 

providing a powerful tool for modeling biological neural systems. However, understanding and 

comparing the complexity of different models remains a challenging task. Complexity here not 

only refers to architectural intricacy but also to how effectively and efficiently the model can 

replicate real-world biological phenomena. 

In this study, we direct our focus towards the Rat Layer 5b pyramidal cell [16], a subject 

of extensive research, and compare it to an analytical reduction by Amsalem et. al. [17]. This 

reduction simplifies the neuron by mapping active channels and synapses based on the 

electrotonic (cable) distance of the particular synapse and ion channel from the soma. Amsalem 

et al. have shown that this approach can replicate voltage dynamics and spike timing across 

various input regimes, forming a vital part of our analysis. 

Our comparison consists of two parts: the ANN-based modeling of these structures, and a 

more detailed comparison of the Rat L5b pyramidal cell with its reduction, involving training the 

same instance of neural networks on different postsynaptic outputs (Figure 2). 

One of the significant findings in Beniaguev et al. [15] is that the best-fitted model often 

correlates with the underlying complexity of the system. Simpler models that capture essential 

features of the system can often provide better fits to empirical data than more complex models 

loaded with redundant parameters. This phenomenon is particularly observed in our study, where 

the neural network with the reduction postsynaptic output fitted the data better than the original 

model. 

By investigating these complexities and simplicities, we aim to shed light on the most 

efficient and accurate representation of the neural systems in question. The study's broader 
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objective is to contribute to the seamless convergence of artificial intelligence with biological 

neural functions, ensuring more precise modeling techniques in computational neuroscience. 

We will delve into the methodologies used, the insights obtained, and how the rate of the 

model might affects the comparison, offering a comprehensive view that could pave the way for 

future research and applications in both computational modeling and biological understanding of 

neural systems. 

 

Mutual Information and Complexity 

In this investigation, we explored the role of neurons as communication channels and 

examined the intricate computations performed by individual neurons in the brain. By doing so, 

we aimed to determine the amount of information that transmitted from the presynaptic neuron to 

the postsynaptic neuron. 

The human brain exhibits vast connectivity; for example, a single CA1 pyramidal cell 

possesses ~30,000 excitatory connections and ~1,700 inhibitory connections [18]. Despite this 

extensive connectivity, the neuron produces a single output. From a mathematical perspective, a 

single neuron can be viewed as a probabilistic function that maps a high-dimensional binary time 

series (input) to a single-dimensional binary time series (output). It is intriguing to explore the 

significance of individual synapses on the output, as demonstrated by previous research [3]. 

By employing mutual information, we can quantify the amount of information processed 

by a neuron from its presynaptic inputs. Furthermore, we can determine the strength of the 

connection between the presynaptic inputs and the postsynaptic outputs. The number of bits per 

milliseconds that are being transferred from the synapses to the axon implies the orchestrated 

power that the synapses have conveying information and the richness of patterns that they can 

hold. 

Mutual information, therefore, serves as a powerful tool to investigate the information 

processing capabilities of single neurons and uncover the complexities inherent in neural 

communication. 
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Mutual Information Comparisons 

The interpretation of the rate's influence on comparison could be ambiguous; is a three-

spike burst less consistent than three separate spikes? Evidence has illustrated that a lone neuron 

can exhibit a spectrum of burst patterns, influenced by external disruptions caused by synapses 

and internal elements like channel noise. The introduction of minimal noise amplifies this 

variability, making the neuron highly responsive to random fluctuations and resulting in chaotic 

and irregular burst patterns, notably during transitions between distinct activity states. This 

highlights the intricate and adaptive characteristics of neuronal behavior, where slight variations 

can induce a range of unpredictable activity patterns [19].  

One approach to measure these variations is information theory. This technique does not 

capture the entirety of computational complexity but focuses on assessing the volume of 

information traversing the communication channel represented by the individual neuron. It 

quantifies the average bits transferred from the presynaptic neurons to the neuron axon, offering 

insights into the informational exchange occurring within these neural networks. 

We have the presynaptic input X the postsynaptic output Y and the neuron which act as a 

function 𝑓: 𝑋 → 𝑌 then we want to examine the transfer of the message 𝑋 → 𝑌. Focusing on the 

number of bits that pass between the input and output could indicate how selective the neuron is 

to certain 𝑥 ∈ 𝑋 and this selectivity will be the mutual information, as this is higher this means 

that the postsynaptic neuron conveys high amount of information in his output on the activations 

of the presynaptic inputs. In our model we assume no intrinsic noise, therefore it is equivalent to 

calculating the postsynaptic neuron spike trains entropy (See Methods). A neuron with high 

sensitivity to all the synapses will result with high entropy and the constant neuron would have 

an entropy of zero. Choosing presynaptic inputs is a crucial step in the comparison process since 

one presynaptic input one neuron might be tuned to certain stimuli while others might not hold 

any information about the event that is being processed. 

Pseudorandom Binary Sequences in the Neuronal Context 

Pseudorandom binary sequences (PRBS) are deterministic sequences that appear random. 

They typically have balanced counts of ones and zeros, lack long runs of identical values, and 

possess constrained cross-correlations. Within the framework of a deterministic biophysical 

model of a neuron, the ideal scenario is for the neuron to attain maximum entropy. This is 
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achieved when the neuron's firing rate is at 
𝑇

𝛥𝑡
⋅

1

2
 , indicating that it is responding to inputs and 

generating outputs at its peak efficiency. Additionally, the output should be as unpredictable as a 

pseudorandom binary sequence (PRBS), characterized by a normalized entropy of 1. Both these 

criteria collectively define the state of maximum entropy for the neuron. When a neuron's firing 

achieves this level of unpredictability, it essentially acts as a pseudorandom generator, producing 

outputs that seem random and are hard to predict from its inputs. Without understanding the 

neuron's inherent properties or the nature of its inputs, such behavior would indeed appear 

random. 

The Unceasing Neuron: A Study of Zero Normalized Entropy 

While in the first case we described a neuron that is the perfect storm in the other case a 

neuron that its normalized entropy is zero would imply that the number of bits that it needs to 

react are zero which might seems as the case of dead neuron , even though without knowing its 

nature we might never know if the neuron do responds to a signal and may need an infinite 

recording time that will display all the possible permutations in order to get the first irregular 

spike, thus the neuron can be viewed as highly selective to the pattern for which it reacts. 

Navigating the Spectrum: From Perfect Noise to Inert Neuronal Response 

The middle ground between these extremes represents a rich area of complexity, 

Calbet et. al. [20] defined statistical complexity, this measure attempts to capture the interplay 

between order and disorder in a system, being zero for both completely ordered (e.g., a crystal) 

and completely disordered (e.g., an ideal gas) systems. It achieves non-zero values for systems 

that are neither fully ordered nor fully disordered, reflecting a more "complex" behavior. 

Statistical complexity depends on the entropy and the disequilibrium, which measures the 

deviation from an equiprobable distribution of states. 

Research by Fuentes et al. [18] demonstrates that true complexity is captured within 

normalized entropy values of 0.45-0.7, away from the boundaries. This region encapsulates the 

dynamic and nuanced nature of chaotic nonlinear dynamic (not exclusively), where neither 

perfect noise nor complete non-responsiveness dominates. 

Furthermore, the landscape between these extremes can be challenging to navigate. Since 

the minimum and maximum boundaries are closer at the edges, differentiation between neuron 
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response and noise may be increasingly difficult. The sensitivity to changes in entropy near the 

boundaries might provide valuable insights into the neuron's adaptability and selectivity. 

By investigating this spectrum, we gain a more profound understanding of the complex interplay 

between noise and order within the neuronal context. This exploration may open doors to new 

dimensions of research, including applications in understanding neurological disorders, 

enhancing artificial neural networks, or even unravelling the hidden complexities of cognitive 

processes. Through a combination of analytical and computational methods, this section attempts 

to bridge the gap between theory and practice, laying the groundwork for future investigations in 

computational neuroscience. 

Shiner, Davison and Landsberg (SDL) Statistical Complexity Comparisons 

The Shiner, Davison, and Landsberg (SDL) [21] statistical complexity measure provides 

another dimension to the analysis of neuronal behaviors. While entropy focuses on the 

unpredictability of a system, SDL statistical complexity considers both the structure and 

randomness within the data. It extends the concept of entropy by introducing a more 

comprehensive evaluation that captures not only the disorder but also the ordered patterns in the 

system. This measure allows us to better understand the underlying complexities in neuronal 

activity, beyond what is achievable by looking at entropy alone. 

This complementary approach to mutual information and entropy provides a richer 

landscape for understanding the subtle intricacies of neural communication. In the subsequent 

sections, we will add to the comparison the SDL statistical complexity, aiming to draw insightful 

conclusions on the organization and complexity inherent in neuronal interactions. 
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Results  

 

Figure 1. The Neuron Models morphologies.  A. Rat layer 5 pyramidal cell model developed by Hay et. 

al. [16] B. Human layer 2/3 pyramidal cell model by Eyal et. al. [22]. These cells are examples of cell-

models used in the present study. 

 

Comparing the Complexity Measures to Detailed versus Reduced Models of L5b 

Pyramidal Cell using Analogous ANNs  

In the first part of this study, we compared the I/O complexity of the detailed model [16] 

versus the reduced model [17] of L5b rat pyramidal neuron, using the corresponding ANNs for 

single neurons as discussed in Beniaguev et al. [15] . Our approach involved a slight adjustment 

in Beniaguev et al. methodology for a more tailored comparison. This entailed using an identical 

ANN for both models (the detailed and the reduced) to assess the learning difficulty (by the 

respective ANN) to replicate the I/O data obtained from each model. The process started with the 

stimulation of the detailed (Fig. 1B)  and the reduced model (Fig. 1C) using the same random 

presynaptic input. We then trained two identical AANs on this input/output data, each aiming to 

learn (and closely replicate) the response of the respective neuron model. We then “deepened” 

the ANN (adding more layers to it) and repeated this comparison (Fig. 2). The effectiveness of 

learning was subsequently assessed using the Area Under the Curve (AUC) as a measure for the 

capability of the ANN to replicate the respective models (see Methods - Training and Comparing 

ANN).  

A B 
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In our investigation, we focused on the effects of model simplification on the learning 

efficiency of Artificial Neural Networks (ANNs). This was achieved by training two identical 

ANNs with the same presynaptic inputs but with outputs derived from two different models 

(Figure 2). One ANN was trained using the output from a simplified model, while the other 

utilized the output from the original, more complex model, as illustrated in Figure 2. Our 

findings shows that the ANN trained with the output from the simplified model demonstrated 

enhanced data fitting capabilities in comparison to the one trained with the output from the 

original model (Figure 3). This observation underscores the benefits of model simplification in 

improving the learning process of ANNs. The simplified model, with its reduced complexity and 

potentially fewer variables, was more effectively replicated by the ANN (compare blue to red 

lines in Figure 3). 

 

 

Figure 2. ANN based Model Comparison: A. Presynaptic input (raster plot) used to activate the detailed 

and the respective reduced model (in B, C). B. L5bPC detailed compartmental model. C. The reduced 

model of the cell shown in B as described by Amsalem et. al. [17]. D.  Two identical ANN are trained on 

the same input data and the target was the output of B and C, respectively E. Evaluation of the ANN 

model (orange) where the ground truth is the output of model show in B (Blue). F Same as E, but here the 

ground truth is the output of the reduced model shown in C.  
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Figure 3. Comparative Analysis of ANN Learning Efficiency on Detailed versus Reduced L5b Neuron 

Models.  AUC as a function of the number of layers in the analogue ANN for the detailed (red) and 

reduced (blue) models shown in Fig. 1B&C respectively. Each ANN was trained on postsynaptic outputs 

from two versions of the Rat L5b pyramidal cell model (the ground truth). The 'number of steps' 

displayed alongside each case corresponds to the training duration at which the network converged 

maximal score. The highest performing networks in each scenario are denoted with red and blue 'X' signs, 

corresponding to those trained on the original and reduced models, respectively. This distinction 

highlights the significant differences in AUC scores, underscoring the impact of model complexity on 

neural network training efficacy (n=4). Significance levels are indicated by * for p value <0.05 and ** for 

p value < 0.00005  

In the analysis, we avoided subjective interpretation of the data, focusing instead on 

algorithmic convergence and accuracy measurements to ascertain the simplicity of the 

presynaptic input patterns in each model. Our findings were promising, yet they revealed a 

notable aspect: the success rates of the networks varied with the firing rate of the model. This 



The Hebrew University of Jerusalem – The Edmond &Lily Safra Center for Brain Sciences 16 

 

variation implies that the rate at which a model operates could significantly influence the 

outcome of such comparisons, indicating a need for careful consideration of model rates in future 

analyses. 

  The comparative analysis of the detailed and reduced models of L5b rat pyramidal 

neurons, conducted using artificial neural networks (ANNs), yields several pivotal insights. It 

firstly substantiates the hypothesis that simplifying a neuronal model can enhance the efficiency 

with which ANNs learn. This conclusion is drawn from the observation that the ANN, when 

trained with outputs from the simplified model, exhibited markedly superior data fitting 

capabilities compared to its performance with outputs from the more complex model. 

This study is particularly significant as it suggests a potential correlation between the 

morphological complexity of neurons and their computational complexity. Employing identical 

ANNs to learn from both the detailed and reduced models underscores this hypothesis. Notably, 

the enhanced ability of the ANN to replicate the reduced model implies that morphological 

intricacies significantly contribute to neuronal computation, as compared to their reduced 

counterparts. 

Furthermore, this research makes a substantial contribution to the field of computational 

neuroscience. It demonstrates how the simplification of models can be beneficial in the training 

of neural networks. The application of Area Under the Curve (AUC) as a metric for assessing the 

ANNs' ability to replicate the respective models introduces an objective dimension to this 

comparison, thereby advancing beyond the subjective interpretations of data previously outlined 

by Beniaguev et al. [15]. 

In conclusion, this study not only aligns with but also builds upon the work of Beniaguev 

et al. [15] and Amsalem et al. [17]. It offers a nuanced comparison between the original neuronal 

models and their reduced versions using ANNs, thereby enriching our understanding of the 

relationship between neuronal morphology and computational complexity. 

Comparison of Model Complexity using Mutual Information 

To deepen our understanding of neuronal model complexity, this section introduces two novel 

experiments employing mutual information as a measurement tool. 

1. Resting Battery Modulation: The first experiment investigates the impact of altering the 

resting battery of the model on the statistics of the spiking output. In a leaky integrate-and-fire 

model with current injection and noise, the proximity of the resting battery to the threshold 
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influences the neuron's output irregularity. This is attributed to the neuron becoming more 

sensitive to noise and less to equilibrium forces as the resting potential approached the spike 

threshold. We believe that by making the model less active, it will produce outcomes similar to 

what we see with the leaky integrate-and-fire model. 

2. Maximal Conductance Variation: The second experiment involves modifying the maximal 

synaptic conductances, effectively enhancing both excitatory and inhibitory forces and their 

(nonlinear) interplay. This manipulation is expected to alter the normalized entropy due to the 

disturbed balance between these forces. Particularly in non-linear synaptic ion channels (the 

NMDA-receptor).. 

Model Variants for Examination: We will examine these alterations across four different 

models to assess their impact on complexity and information processing (as seen at Figure 1): 

• Rat L5PC, as detailed in [16]. 

• Rat L5PC without NMDA channels, a variation of the first model. 

• Human L23PC, as described in [22]. 

• A hybrid model combining the Human L23PC physiology with the Rat L5PC morphology. 

These experiments aim to provide a comprehensive understanding of how variations in model 

parameters affect the complexity and information processing in neuronal models. 

 

Figure 4. An Example of Different Traces with Varying Normalized Entropy Values, demonstrating the 

importance of normalized entropy in spike train analysis. Each trace represents somatic voltage responses 

over time, with the corresponding normalized entropy (at top). As the spike activity becomes less regular 

the normalized entropy increases. 
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Resting Battery Shift Models 

In a basic experiment using mutual information to assess model complexity, we compare 

two versions of a Rat Layer 5b Pyramidal Cell model [16]: one with NMDA synapses and one 

without (Figure 5). Both models are subjected to the same inputs, but we adjust their resting 

potential differently. This adjustment leads to different levels of direct current (resting battery) 

shifts in the neurons’ passive state(i.e., when active components of the model, such as voltage 

gated channels, are absent or inactive in the whole model). As a result, the average voltage across 

the neuron’s soma changes, although the point at which the neuron starts to fire (spiking 

threshold) remains roughly the same. 

 Figure 5  shows that as predicted by the Leaky Integrate-and-Fire (LIF) model, there is a 

noticeable increase in the rate as the resting battery approaches the neuronal threshold. This 

relationship is represented by both models showing a progressive increase in firing rate with the 

rise in resting battery from -100 mV towards 20 mV This visualization underscores the influence 

of resting battery adjustments on neuronal excitability. 

Figure 6 demonstrate a parallel increase in entropy with the same trend as the rate. As the 

resting battery approaches the threshold from -100 mV to 20 mV, the entropy rises, suggesting a 

consistent relationship with the increased firing rate. Higher entropy indicates greater 

unpredictability and richer complexity in the neuronal response. This ascent in entropy 

underscores the interdependence between rate and entropy, with the shaded areas around the 

plotted lines representing the standard error from the mean, providing a statistical measure of 

dispersion for the observed entropy values. 

Contrary to the unnormalized entropy, normalized entropy inversely indicates the 

regularity of neuronal discharge. Figure 7 reveals that as the resting battery varies from -100 mV 

to 20 mV, the normalized entropy demonstrates a concave shape, suggesting a non-linear 

relationship with the resting battery and implying a nuanced interplay between regularity and 

complexity in the neuronal response. While both models exhibit this concave trend, the model 

without NMDA receptor influence shows a slight decline in regularity at the midpoint, raising 

questions about the influence of NMDA receptor activation on the predictability of neuronal 

firing. 

Analyzing the mutual information of different neurons with the same output amidst 

varied complexities unveils critical insights into the underpinnings of neuronal complexity. The 
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various figures elucidate the nuanced dynamics arising from changes in resting battery and the 

roles they play in influencing neuronal communication, complexity, and selectivity. 

 

 

 

Figure 5. Rate Modulation as a Function of Resting Battery Level in Rat L5 Pyramidal Cells. Blue curve: 

the case where the resting battery change is due to NMDA receptor activity. Orange: the case  where the 

NMDA receptors replace by AMPA only channels  (Rat L5PC w/o NMDA). . The shaded area represents 

the 95% confidence interval, indicating where we expect the true mean values to lie with a high level of 

certainty. 
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Figure 6. Entropy Variation with Resting Battery in Rat L5 Pyramidal Cells. The figure depicts the 

dynamic change in entropy as a function of the resting battery in Rat Layer 5 Pyramidal Cells (L5PC), 

under two conditions: with active NMDA receptors (Rat L5PC) and without NMDA receptor activation 

(Rat L5PC w/o NMDA). The shaded area represents the 95% confidence interval, indicating where we 

expect the true mean values to lie with a high level of certainty. 
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Figure 7. Regularity of Response Reflected in Normalized Entropy Across Resting Battery Variations. 

The figure delineates the trend in normalized entropy as a function of resting battery changes in Rat Layer 

5 Pyramidal Cells, under the same two conditions: with active NMDA receptors (Rat L5PC) and without 

(Rat L5PC w/o NMDA). The shaded area represents the 95% confidence interval, indicating where we 

expect the true mean values to lie with a high level of certainty. 
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Figure 8. Shiner, Davison, and Landsberg Statistical Complexity as a Function of Resting Battery 

Change. The figure visualizes the Shiner, Davison, and Landsberg (SDL) statistical complexity in relation 

to changes in the resting battery for Rat Layer 5 Pyramidal Cells. It compares two scenarios: one with 

active NMDA receptors (Rat L5PC) and the other without (Rat L5PC w/o NMDA). The shaded area 

represents the 95% confidence interval, indicating where we expect the true mean values to lie with a high 

level of certainty. 

Integrating Insights for Neuronal Complexity 

The detailed comparison of the Rat L5bPC model with and without NMDA synapses, 

subject to identical inputs but varied passive channel equilibria, casts light on the intricate 

relationship between resting battery shifts and neuronal complexity. The increment in firing rate 

and entropy (echoes the heightened information content and complexity) as shown in Figure 6. 

However, the nuanced variations, especially in normalized entropy, unfold a deeper narrative of 

order, chaos, and the delicate equilibrium therein (Figure 7). 

The unveiling of convergence in SDL complexity as resting battery shift accentuates 

underscores the intricate amalgamation of order and randomness that defines the essence of 

neuronal communication.  
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Figure 8 shows that as the resting battery increases from -100 mV to 20 mV, we observe a 

convex trend indicating that SDL complexity initially decreases and then increases, suggesting a 

non-monotonic relationship between resting battery and complexity. Both models exhibit 

convergence in complexity with increasing resting battery, indicating that the presence of NMDA 

receptors might be less influential at higher resting battery levels. This convergence pattern 

prompts an exploration into how shifts in resting battery influence the intricate balance between 

order and randomness in neuronal activities, and how the modulation of NMDA channels may 

impact on this complex dynamic. 

The analyses in Figure 8 provide important insights, leading us into the complex world of 

neurons. The oscillation between order and chaos, the intricate dance of entropy and rate, and the 

subtle nuances unveiled by SDL complexity (all converge to sculpt a rich, multidimensional 

landscape). This unveils unprecedented avenues for understanding neuronal complexities. Each 

figure, in its eloquent narrative, contributes to demystifying the enigmatic dance of order and 

chaos that defines the core of neuronal interactions and complexities. 

 

Increasing Synaptic Conductance and Comparison of Various Models  

We further investigate different models: Rat L5bPC with and without NMDA synapses 

(which in turn will be replaced by AMPA only synapses) And Human L23 cell by Eyal at al [22] 

one with Rat L23 morphology and one with the original human morphology. We took the method 

even further and increased the inhibitory and excitatory synapses conductance by a factor, 

resulting in enhancing and decreasing the effect of single synapses on the spike output (see 

Methods for the actual conductance).  

In this phase of the investigation, insights garnered from the observed variations in 

entropy (Figure 9, Figure 10) and SDL statistical complexity among the four different models: 

Rat L5bPC with and without NMDA synapses, and Human L23 cell by Eyal et al., both in its 

original and Rat L23 morphological configurations. These models were subjected to 

modifications in synaptic conductance to explore their responsive characteristics and inherent 

complexities. 

Across all models, as maximal conductance increases, there is a concomitant rise in 

entropy, as seen in Figure 9, indicating a more unpredictable and complex neural activity pattern. 
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The trend lines for each model exhibit a positive correlation between conductance and entropy. 

This observation aligns with the general understanding that greater synaptic input, represented by 

conductance, can increase the complexity of a neuron's output. However, as inferred from Figure 

13 and the correlation matrix in Figure 16, entropy's relationship with maximal conductance does 

not fully capture the underlying dynamics, suggesting that additional factors contribute to the 

observed neuronal behavior. 

Figure 10 shows a notable divergence in the response of the Human L23 model, which 

experiences a sharp decline in normalized entropy as conductance increases. This suggests a 

unique adaptability and functional diversity in the Human L23 cells compared to the other 

models. The changing slope for Human L23 Indicates a more significant change in regularity or 

predictability of response with increasing synaptic input. Conversely, the Rat L5PC  AMPA only 

model show a more subtle variation in normalized entropy, reflecting lower different 

complexities and response patterns, possibly because the lack of non-linearity comparing to the 

other models which has NMDA channels. 
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Figure 9. Entropy Trends in Relation to Maximal Synaptic Conductance Across Different Models. Here 

we explore the relationship between entropy and maximal synaptic conductance (measured in nano 

siemens) in various neuronal models. Included are human Layer 2/3 models—the Human L23 and a 

hybrid model combining Human L23 physiology with Rat Layer 5 morphology—and Rat Layer 5 

Pyramidal Cell models, both with (Rat L5PC) and without NMDA receptors (Rat L5PC w/o NMDA). 

The shaded area represents the 95% confidence interval, indicating where we expect the true mean values 

to lie with a high level of certainty. 
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Figure 10. Variations in Normalized Entropy with Maximal Synaptic Conductance in Neuronal Models. 

Presents the variations in normalized entropy across a range of maximal synaptic conductance values for 

different neuronal models, including human Layer 2/3 models—the Human L23 and a hybrid model 

combining Human L23 physiology with Rat Layer 5 morphology—and Rat Layer 5 Pyramidal Cell 

models, both with (Rat L5PC) and without NMDA receptors (Rat L5PC w/o NMDA). The shaded area 

represents the 95% confidence interval, indicating where we expect the true mean values to lie with a high 

level of certainty. 

 

Figure 11 and Figure 18 shifts focus to SDL statistical complexity, presenting a clear 

alignment with the pre-established complexity hierarchy of the models. The Human L23PC 

emerges as the most complex entity, followed sequentially by the Human L23PC with Rat 

morphology, Rat L5PC, and finally, the Rat L5PC without NMDA. The differences in 

complexity are highlighted by changes in synaptic conductance, which also prove the expected 

levels of complexity. 
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Figure 11. SDL Statistical Complexity Across Different Neuronal Models. provides a box plot analysis of 

the Shiner, Davison, and Landsberg (SDL) statistical complexity for four neuronal models. The models 

compared are human Layer 2/3 models—the Human L23 and a hybrid model combining Human L23 

physiology with Rat Layer 5 morphology—and Rat Layer 5 Pyramidal Cell models, both with (Rat 

L5PC) and without NMDA receptors (Rat L5PC w/o NMDA). The complexity levels are clearly 

differentiated among the models, with the Human L23 showing the highest complexity, as indicated by 

the median and interquartile range, and the Rat L5PC w/o NMDA showing the lowest. The box plots 

illustrate the spread and variability of complexity within each model, with the tails of the plots indicating 

the range.  

 

The amplified synaptic conductance delineated distinct behavioral patterns among the 

models. Each model's response underscored its inherent architectural and functional attributes, 

painting a diversified landscape of neuronal complexity. Figure 10  illustrates significant 

differences between human L23PC and rat L5PC models in terms of function. The  Human 

L23PC, marked by heightened entropy and a rapid decline in normalized entropy, embodies an 

intricate array of structural and dynamic functional elements. In contrast, the Rat L5PC models, 
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though reflective of moderate complexities, encapsulate an essential blend of functional diversity 

and constraints. 

These observations collectively weave an intricate narrative of the dynamic and nuanced 

landscape of neuronal complexities. The modulations induced by variations in synaptic 

conductance illuminate the distinct architectural, functional, and dynamic attributes of each 

model, offering a rich tapestry of insights into the multifaceted world of neuronal dynamics and 

complexities.  

 

Methods 

Presynaptic Input Data 

As described by Beniaguev , Segev, and London (2021) [15], we employed Poisson 

processes in our study to produce presynaptic spike trains featuring smoothed piecewise constant 

instantaneous firing rates. The Gaussian smoothing sigma and the constant rate duration before 

smoothing were independently resampled for each 60-second simulation, with the initial 500 

milliseconds being omitted and values ranging from 10 milliseconds to 600 milliseconds. 

Furthermore, the study incorporated the probability of synchronization, deactivation, and specific 

synaptic clustering. This methodology, as opposed to using a constant firing rate, sought to 

increase the temporal variation in the data, thereby bolstering the significance and 

generalizability of the results to a wide range of situations. Each recording of the 80 recording 

that had been done was for 60,500 milliseconds. 

Postsynaptic Models 

Models were based on the Rat L5bPC [16] and the Human L23PC [22] 

with 𝑔𝑚𝑎𝑥 = 0.0007 for all the AMPA/NMDA/GABAA synapses in rat model and  

with 𝑔𝑚𝑎𝑥 = 0.0007 for the GABAA synapses and  𝑔𝑚𝑎𝑥 = 0.00073027 for the AMPA/NMDA 

synapses in human model. Each recording of the 80 recordings that had been done, was for 1 

minute, the entropy was computed on the resolution of 1 millisecond (60,000 length sequence). 
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Training and Comparing ANN 

In our methodology, we constructed a temporal convolutional neural network for each 

neuron, following the guidelines laid out in references [15] and [23] .These networks were 

applied to identical input patterns but were distinct in their output models: one tailored for the 

L5PC model (as per [16] ) and the other for its reduced version [17], with both starting from the 

same initial weights. The training of these networks was conducted layer-wise (layers 1, 3, 5, and 

7), focusing on achieving convergence in the loss function. 

For the evaluation phase, we employed the Area Under the Curve (AUC) metric.  

This AUC metric, pivotal in machine learning, assesses the performance of classification models 

by calculating the area under the Receiver Operating Characteristic (ROC) curve, represented by 

the formula: 

 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

(1) 

 The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) across 

different thresholds. In this context, a higher AUC score, which can range from 0 to 1, correlates 

with higher model performance. A score of 1.0 signifies perfect classification, while 0.5 indicates 

no discriminative power. 

 

Mutual Information Estimation 

Shannon’s mutual information between random variables X,Y is: 

max(𝐻(𝑋), 𝐻(𝑌)) ≥ 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) ≥ 0 (2) 

In the case of noiseless channel, we get.  

𝐻(𝑌|𝑋) = 0 → 𝐼(𝑋; 𝑌) = 𝐻(𝑌) (3) 

The mutual information metric quantifies the amount of information shared between two 

variables, X and Y. Specifically, it measures the reduction in uncertainty about one variable given 

knowledge of the other, expressed in terms of the number of bits needed on average to describe 

the information transmitted from X to Y. This metric is essential for understanding the extent to 

which the knowledge of one variable reduces uncertainty about the other. 
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Entropy Estimation 

Approximating the entropy of binary time series ,specifically time series was done 

previously by  Gao, Kontoyiannis and Bienenstock [24] Infinite Context Tree Weighted(CTW) as 

described in [25] [26] was used in order to calculate the entropy of each spike trains. 

 

Normalized Entropy 

We can notice one constraint on the postsynaptic output and that is that the neuron outputs are 

single dimension while his input is multidimensional therefore it will be bound from above by 

the maximum entropy of a single dimension process which is the entropy of the uniform 

distribution over all possible states. 

We then can calculate the normalized entropy over a given spike trains with length of T and time 

resolution of Δ𝑡 denoted by 

𝑠𝑚 ∈ {𝑠|𝑠 ∈ {0,1}
𝑇

Δ𝑡 ∧ |𝑠| = 𝑚} (4) 

 

(which is a vector of binned time of length 
𝑇

Δ𝑡
  with m spikes in it)  

The uniform probability for each state is 

 

𝑃(𝜔) =
1

(
𝑇

Δ𝑡
𝑚

)

𝑚!(
𝑇

Δ𝑡
−𝑚)!

𝑇

Δ𝑡
!

(5) 

 and the entropy: 

 

𝐻𝑚𝑎𝑥(𝑆𝑚) = ln (
𝑇

𝛥𝑡

𝑚!(
𝑇

𝛥𝑡
−𝑚)!

) (6)   

The normalized entropy will be then: 

𝐻̂(𝑆𝑚) =
𝐻(𝑆𝑚)

𝐻𝑚𝑎𝑥(𝑆𝑚)
(7) 

 

With the bound  
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0 ≤ 𝐻̂(𝑆𝑚) ≤ 1 (8) 

 

Now we have a measure of the postsynaptic neuron output that is invariant to the firing rate. 

 

SDL Complexity 

SDL complexity is mentioned at [21] [27] where the simplest form is: 

𝑆𝐷𝐿(𝑋) =
𝐻(𝑋)

𝐻𝑚𝑎𝑥(𝑋)
⋅ (1 −

𝐻(𝑋)

𝐻𝑚𝑎𝑥(𝑋)
) (9) 

Comparisons 

Comparisons between models were made by using the same presynaptic input patterns 

and analyzing their results. 

Resting Battery Comparisons 

To evaluate two models, the one with the NMDA was normalized by scaling the original 

model's maximal conductance by a factor of 0.2 to compare the models with the same rate. The 

passive equilibria were adjusted to different values to attain the desired resting battery shift. 

Conductance Factor Comparisons 

To assess the change in the conductance factor, we applied various maximal conductance 

scaling factors to the different models ranges as shown in the results. 
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Discussion 

Rigidity and fluidity 

What distinguishes neurons with low mutual information from those with high mutual 

information? Our hypothesis posits that the key difference lies in the balance between memory 

stability and learning rate. In the case of a neuron characterized by low mutual information (and 

thus rigidity), the limited amount of information it processes leads to smaller changes in synaptic 

plasticity (e.g., reduced calcium influx). Conversely, when a neuron exhibits high mutual 

information, it processes a more diverse range of information, which is not specific to any 

pattern. As a result, this "fluid" neuron undergoes fewer orderly updates in its synaptic weights, 

leading to a higher learning rate and decreased memory stability. 

Regarding Hebbian plasticity, the idea that varied mutual information might dictate 

adaptation and consolidation is an extrapolation from Hebb's postulate itself. Some parts of the 

circuit continuously adapting might ensure robustness against noise while others are 

consolidating and stabilizing information. 

 

The importance of the functional parts of a circuit 

Balancing Roles of Neurons Circuits in the brain are intricate networks where different 

neurons contribute to a wide range of processing tasks. The differential mutual information 

across neurons suggests a balance between processing tasks and maintaining stability in 

representations. Neurons with low mutual information may be akin to those involved in 

maintaining stable, long-term knowledge. For example, certain neural populations have been 

observed to exhibit consistent firing patterns in response to persistent stimuli, indicating a form 

of stability in their representations such as spontaneous noise or oscillatory patterns in the cortex. 

On the flip side, neurons with high mutual information might be more responsive to 

diverse stimuli, reminiscent of the concept of adaptive neurons. Some neurons, especially in the 

early sensory areas, show greater adaptability in response to novel stimuli [28] [7]. The high 

mutual information in these neurons represents how well they encode incoming stimuli, aiding in 

their adaptability. Their higher learning rates suggest they play roles in periods of rapid learning 

[29]. 



The Hebrew University of Jerusalem – The Edmond &Lily Safra Center for Brain Sciences 33 

 

This diversity in neural operations, facilitated by varying levels of mutual information, 

forms the crux for complex computations, including those involving learning, memory, and 

adaptation. 

In Conclusion This discussion underscores the likely roles of neurons with varied mutual 

information levels. Such a division may be an evolutionary adaptation, offering both adaptability 

and consistency in information processing. The adaptive neurons, with higher mutual 

information, are pivotal during periods of rapid learning and adaptability to novel stimuli, while 

those with lower mutual information contribute to maintaining stable representations, thereby 

ensuring a balanced and efficient functioning of neural circuits. 

 

Potential of Mutual Information Measurements in Circuit Analysis 

The intricate workings of neural circuits have long been a subject of intense study, with 

numerous methods employed to probe their mysteries. The measure of mutual information offers 

a promising avenue in this quest. By comparing the mutual information of different neurons with 

the same presynaptic input, we can potentially glean insights into the functional roles and 

responsiveness of individual neurons within a circuit. Such a comparison would not only help 

distinguish between neurons that are more adaptable versus those that prioritize stability but also 

shed light on the mechanisms underpinning these differences. 

This comparative approach could revolutionize our understanding of neural circuits. It 

promises to unravel the unique contributions of individual neurons to overall circuit function. By 

harnessing the insights gained from these analyses, we might be better positioned to comprehend 

the complexities of neural computations, from basic sensory processing to advanced cognitive 

tasks. This enhanced understanding could bridge gaps in our current knowledge, guiding future 

research directions and refining our brain function models. 

 

Assessing mutual information in vivo 

Measuring mutual information in vivo on sustained stimuli provides a method to analyze 

individual neuron responsiveness within neural circuits. By examining mutual information on a 

per-neuron basis, insights into the functional roles and adaptability versus stability of neurons 

can be gleaned. This approach could help identify “complex” neurons with high mutual 
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information, indicative of greater adaptability to diverse stimuli, and contrast them with neurons 

exhibiting lower mutual information, which may represent stability in information processing. 

Through such analyses, a more nuanced understanding of neural circuits and their role in 

complex computations could be achieved, aiding in the broader exploration of brain function. 

 

Conclusions 

Our research has presented a novel approach to delineate the functionality of neurons by 

assessing the volume of information relayed from presynaptic to postsynaptic neurons. 

Leveraging the concept of mutual information, we have been able to delve deeper into the 

computational proficiencies of individual neurons. This offers valuable insights into their 

probable contributions in determining the varied behaviors we observe in natural settings. 

Furthermore, this method empowers us to ascertain the distinctive functionalities of cells 

based on a specific distribution. It aids in quantifying the bits of information that traverse 

through the collective ensemble of presynaptic neurons to their postsynaptic counterparts. Our 

comparisons across multiple models substantiated the hypothesis that NMDA synapses amplify 

the intricacy of neurons. Conversely, fortifying the synapses diminishes this complexity, 

primarily as each synapse regulates the neuron’s voltage, rendering it increasingly vulnerable to 

noise. This observation was consistently mirrored in the resting battery shift models, further 

validating our proposed framework. 

To deepen our understanding, evaluating various models devoid of internal noise and 

subjected to identical inputs might present a promising avenue. This could elucidate the 

influence of diverse inputs on the plethora of models at our disposal. 
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Supplementary Figures 

 

Figure 12. Rate Distributions and Variability Across Neuronal Models. The figure illustrates the 

distribution and variability of firing rates across a selection of neuronal models. The top histogram details 

the occurrence frequency of different rate values for Human L23, Human L23 physiology with rat 

morphology, and Rat L5PC, both with and without NMDA resting battery influence. Each model's rate 

distribution is color-coded, allowing for an assessment of overlap and dispersion. The bottom box plot 

provides a statistical summary of the same rate data, highlighting the median, quartiles, and outliers, thus 

offering a clear comparison of central tendency and variability among the models. This combined 

graphical representation serves to elucidate the comparative dynamics of neuronal firing rates, as 

influenced by morphological and physiological variations. 
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Figure 13. Firing Rate Responses to Maximal Synaptic Conductance in Neuronal Models. The figure 

displays the relationship between firing rates and maximal synaptic conductance for four different 

neuronal models: Human L23, Human L23 rat morph, Rat L5PC, and Rat L5PC without NMDA 

receptors. The graph shows a clear trend where increases in maximal conductance correspond to higher 

rates for each model. The Human L23 and its rat morphological counterpart exhibit similar patterns of 

increase, with the human model showing slightly higher rates at corresponding conductance levels. The 

Rat L5PC model demonstrates a less steep relationship, indicating a different sensitivity to conductance 

changes compared to human models. Notably, the Rat L5PC without NMDA receptors shows the lowest 

rate response across the conductance range, suggesting that NMDA receptor activity significantly 

contributes to the firing rate. The shaded regions around each line denote the standard error, reflecting the 

variability in the measurement. The shaded area represents the 95% confidence interval, indicating where 

we expect the true mean values to lie with a high level of certainty. 
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Figure 14. Entropy Dependency on Firing Rate in Various Neuronal Models. The figure portrays the 

correlation between entropy and firing rate for a set of neuronal models: Human L23, Human L23 with rat 

morphological alterations, Rat L5PC, and Rat L5PC without NMDA receptors. The scatter plot 

aggregates data points from multiple instances, with each model represented by a unique color. A dashed 

line indicating 'Maximal Entropy' suggests a theoretical or observed upper limit of entropy across rates. 

The data points collectively exhibit a positive correlation; as the firing rate increases, there is a 

corresponding rise in entropy, implying more variability in the firing patterns at higher rates. This trend 

holds true across all models, though with varying degrees of slope, which may reflect differences in the 

complexity or adaptability of each model's firing patterns. The spread of data points around the line of 

maximal entropy highlights the range within which each model operates under the given experimental 

conditions. 
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Figure 15. Correlation of Normalized Entropy with Firing Rate in Neuronal Models. The figure displays 

the relationship between normalized entropy and firing rate for a collection of neuronal models, including 

Human L23, Human L23 physiology with rat morphological adjustments, Rat L5PC, and Rat L5PC 

without the influence of NMDA receptors. Each model is represented by a distinct color in the scatter 

plot, which shows the entropy normalization for a range of firing rates. The plot suggests a general trend 

where higher firing rates correspond to lower normalized entropy, particularly noticeable in the Human 

L23 model. This inverse relationship indicates that as neurons fire more rapidly, the predictability of their 

firing patterns increases, thus reducing normalized entropy. The Rat L5PC models, especially without 

NMDA receptors, display a broader distribution of normalized entropy across rates, pointing to different 

intrinsic dynamics in entropy modulation compared to human models. The dense clustering of data points 

at lower rates reveals the models' behavioral consistency at baseline firing levels. 
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Figure 16. Correlation Matrix of Neuronal Properties with Increasing Synaptic Conductance. The 

correlation matrix quantitatively describes the relationships between various neuronal properties such as 

rate, entropy, normalized entropy, and maximal synaptic conductance (measured in nano siemens). The 

matrix provides correlation coefficients ranging from -1 to 1, where 1 indicates a perfect positive 

correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation. According to the 

matrix, rate and entropy show a very high positive correlation (0.98), suggesting they increase together. 

Normalized entropy has a moderate positive correlation (0.36) with maximal conductance, which is the 

strongest correlation involving maximal conductance, indicating that as the conductance increases, there 

is a tendency for normalized entropy to increase as well. In contrast, rate and normalized entropy display 

a negative correlation (-0.43), implying that as the firing rate increases, the normalized entropy tends to 

decrease. The color gradient from blue to red visually emphasizes the strength and direction of these 

correlations. 
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Figure 17. Resting Battery Shift is Correlated Highly with Rate and Entropy. The correlation matrix 

quantitatively describes the relationships between various neuronal properties such as rate, entropy, 

normalized entropy, and maximal synaptic conductance (measured in nano siemens). The matrix provides 

correlation coefficients ranging from -1 to 1, where 1 indicates a perfect positive correlation, -1 indicates 

a perfect negative correlation, and 0 indicates no correlation. According to the matrix, rate and entropy 

show a very high positive correlation (0.98), suggesting they increase together. Normalized entropy has a 

moderate positive correlation (0.36) with maximal conductance, which is the strongest correlation 

involving maximal conductance, indicating that as the conductance increases, there is a tendency for 

normalized entropy to increase as well. In contrast, rate and normalized entropy display a negative 

correlation (-0.43), implying that as the firing rate increases, the normalized entropy tends to decrease. 

The color gradient from blue to red visually emphasizes the strength and direction of these correlations. 
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Figure 18 SDL Complexity as A Function of Maximal Conductance. The figure displays the relationship 

between The SDL statistical complexity and maximal synaptic conductance. The models compared are 

human Layer 2/3 models—the Human L23 and a hybrid model combining Human L23 physiology with 

Rat Layer 5 morphology—and Rat Layer 5 Pyramidal Cell models, both with (Rat L5PC) and without 

NMDA receptors (Rat L5PC w/o NMDA). The complexity levels are clearly differentiated among the 

models except the point where there is intersection with 𝑔𝑚𝑎𝑥= 0.0006 , with the Human L23 showing the 

highest complexity, and the Rat L5PC w/o NMDA showing the lowest across all of the maximal 

conductance values. The shaded area represents the 95% confidence interval, indicating where we expect 

the true mean values to lie with a high level of certainty. 
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Figure 19. SDL Complexity and Statistical Significance Across Neuronal Models. The box plot illustrates 

the SDL complexity for different neuronal models—Human L23, Human L23 physiology with rat 

morphology, Rat L5PC, and Rat L5PC without NMDA receptors—alongside the statistical significance 

(p-values) of differences between them. The box plots show the median, interquartile range, and outliers 

for each model's complexity. Overlaid on the plot are brackets indicating pairwise comparisons between 

models with corresponding p-values, which denote the statistical significance of the difference in 

complexities. The extremely low p-values (ranging from 1.32e-04 to 1.46e-175) confirm that the 

differences in complexity between the models are highly significant. Notably, the Rat L5PC without 

NMDA receptors shows a markedly lower complexity compared to the other models, as evidenced by its 

lower median and smaller interquartile range. These p-values provide a robust quantification of the 

disparities observed, supporting the hypothesis that morphological and synaptic properties significantly 

influence the computational complexity of neuronal models. 
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Figure 20. Validation of CTW Algorithm on Poisson Random Variable. As a sanity check we evaluate the 

Context Tree Weighting (CTW) algorithm's performance in estimating the entropy of a Poisson random 

variable at different rates of occurrence (λ). The x-axis denotes the lambda parameter scaled by 1/1000, 

while the y-axis represents the entropy estimated by the CTW algorithm. Three curves correspond to 

sequence lengths of 2500, 5000, and 10000, each indicating the entropy approximation's consistency 

across sequence lengths (analytical solution in red). The graph shows that the CTW algorithm's entropy 

estimations align closely for all sequence lengths, particularly at intermediate λ values, where the entropy 

reaches a peak before declining. This pattern validates the CTW algorithm's effectiveness in capturing the 

intrinsic randomness of the Poisson process, with the peak entropy reflecting the point of maximum 

uncertainty or variability in the distribution. 
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Figure 21. Intuitive Visualization of Entropy and SDL Complexity for a Bernoulli Random Variable. The 

figure presents a comparative analysis of entropy and SDL complexity for a Bernoulli random variable 

across different probabilities of success (𝑝). The x-axis represents 𝑝, ranging from 0 to 1, while the y-axis 

quantifies both entropy and SDL complexity, accommodating their respective scales. Two distinct curves, 

each representing one of the two metrics, are plotted. The entropy curve is undefined at 𝑝 = 0 and 𝑝 = 1, 

indicating zero entropy in these deterministic scenarios. It ascends to reach a peak at 𝑝 = 0.5 ,where the 

uncertainty is maximized due to the equal likelihood of success and failure, and then symmetrically 

descends as 𝑝 approaches 1. In contrast, the SDL complexity curve, while also undefined at 𝑝 = 0 and 

𝑝 = 1, exhibits a different pattern. It rises to a peak near 𝑝 = 0.11 and 𝑝 = 0.89 and then declines to 

reach its lowest point at 𝑝 = 0.5, rising again symmetrically towards 𝑝 = 1. This illustrates that the SDL 

complexity is not highest when the uncertainty is maximized. 
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