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INTRODUCTION RESULTS

Gesture recognition using forearm muscle surface electromyography (SEMG) signals are gaining a ViViT Hand Kinematic Regression Score Per Joint Angle
lot of attention, but current methods often fail when the hand is not held still. This study

addresses this limitation with a novel wireless sSEMG system and Video-Vision-Transformer (ViViT) N Static o Static 3 - By

model.
The proposed approach successfully identifies static finger gestures even while the user's hand is 5 e
in motion. This breakthrough in separating gestures from motion-related noise is a significant step The Ty
toward more robust, real-world applications in prosthetics, virtual reality, and human-machine % T A
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Sixteen healthy adults (aged 21-30) performed seven repetitions of 14 finger gestures. Each
gesture was held for 5 s with a 3 s rest in between. The experiment was conducted under four
settings, including three different “Static” settings and a “Dynamic” setting, simulating real-world
conditions where participants moved their arm freely (within the sensor's range). No instructions
were given regarding gesture force.
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Figure 2. Finger joint angle prediction: Normalized error between joint angle values from the
model's output and motion sensor measurements.
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%m% Figure 3. (Left) Mean absolute error of the joint angles for each setting, (Right) Distribution of
MHRA average classification accuracy per subject for each condition. (*) significance level using
. § ? X9 7 paired t-test p<0.05.
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—— EMG Data @ - Hand Kinematic Data
ViViT CNN+LSTM CNN FC
91.5% 89% 56%
Accuracy Accuracy Accuracy Static1 |55% + 11% | 40% + 18% |31% + 15% | 19% + 10%
Table 1. Accuracy across
Figure 1. sSEMG and hand-kinematic signals during unconstrained gestures (left) and during force- settings and models with Static 2 [54% + 14% | 44% +16% |30% + 12% | 23% + 10%
plus-rest instructions delivered in random (middle) or sequential (right) order. Black solid lines are equal parameter counts,
. . . . . - I 0 0 0 0 0 0 0 0]
sEMG signals from two electrode channels; red dashed lines overlay the corresponding joint- 14 gestures, 16 subjects Static 3 | 65% +12% | 48% £ 17% | 40% + 12% | 28% £ 9%
i ' ' ' ' ' mean + SD
gndgle ttrijectc.)tr.les. Dark horizontal bands mark the active gesture periods, and gray regions ( + SD) Dynamic | 54% + 13% | 36% + 17% | 29% + 10% | 22% + 8%
indicate transitions.

CONCLUSIONS Detailed methods: JoVe article Poster

We paired soft, wireless 16-electrode sEMG with a Video-Vision-Transformer to decode finger joint angles during freely moving arm. L: E E
Despite unconstrained conditions, the model of the best performing subject reached 87 % accuracy, showing that fine finger kinematics can be recovered
in real-world conditions. Moreover, ViViT model outperforms other network architectures (CNN, CNN+LTSM, FC).

Finally, this study advances gesture recognition by evaluating performance in settings that simulate natural behaviour versus those under traditional,
controlled laboratory protocols.
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